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Linear logic, introduced by Girard et al., has a great power of expression, but 
no method for induction. This paper proposes a method of induction using 
knowledge represented by linear logical formulas. In linear logic, the number of 
propositions is controlled by logical operators. When a background theory and 
a hypothesis prove an example, the number of propositions on each side must 
be equivalent. 

I. INTRODUCTION 

Linear logic, introduced by Girard et aL (1995), has a great power of 
expression, but no method of induction. Induction is an operation of inferring 
hypotheses. A hypothesis and a given background theory should explain 
given examples. Examples are classified as positive examples and negative 
examples. Positive examples are propositions that some events obey, by the 
background theory and the hypothesis. Negative examples are propositions 
that some events do not follow, and that are consistent with the background 
theory and the hypothesis. 

Some incremental inductive methods based on traditional logic employ 
the first given positive example as the first hypothesis. However, in linear 
logic, the first positive example is not always the first hypothesis. Since the 
number of propositions is controlled by logical operators, induction must 
make the accounts balance. 

Inductive operations are considered to be the inverse of deductive opera- 
tions, because deduction can infer a positive example from a background 
theory and the hypothesis. For example, in the field of inductive logic pro- 
gramming (ILP), some inductive operations which are inverses of one or two 
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steps of resolutions are employed (Muggleton and De Raedt, 1994). In this 
paper, some inductive operators for positive examples are defined. Those 
operators translate the succedent to the antecedent. 

In this paper, we define linear logic in Section 2. Section 3 defines 
induction. In Section 4, we explain the syntactical inductive operations. We 
explain the case of one positive example in Section 4, and the case of plural 
positive examples in Section 5. 

2. L IN E A R  L O G I C  

Linear logic is defined by formation rules and inference rules as follows. 

Definition 2.1. Formula. Let ~ be the set of all formulas in linear logic. 
is defined as follows. 

• Proposition P ~ ~ .  
• Propositional constants T,  1, L ,  0 E ~ .  
• I f X  ~ ~ , t h e n  !X,?X,X l ~ ~ .  
• I fX,  Y E  ~ , t h e n X ® Y ,  X P Y ,  X - o y X O Y ,  X & Y ~  ~. 

In this paper we deal with the first-order predicate linear logic. Thus, 
propositions are defined as in traditional first-order logic including 0-adic 
predicates. 

Conventionally, upper case Latin letters A, B . . . .  denote formulas, upper 
case Greek letters F, A . . . .  denote finite multisets of  formulas. Parentheses 
are used to represent the order of connections. 

Definition 2.2. Proof Tree. F I- A is a sequent which consists of antecedent 
F and succedent A. When F is the multiset {Xl, )(2 . . . . .  Xn} and A is the 
multiset {Yl, )'2 . . . . .  Y,,}, the sequent F k A has the same meaning as X~ 
® )(2® ""  ® X , - °  Yt P Y 2 P ' "  PYm. 

F, A denotes a multiset F including at least one formula A. 
Linear logic is defined by the initial sequents and rules of inference of 

Fig. 1. 

The relation I- is reflexive because of the initial sequent D I- D, and 
transitive because of the cut rule. We define X = Y iff X k Y and Y k X. 
Thus k is the partial order on ~ .  When X k Y, X is smaller than Y According 
to this order, 0 and T are the minimum and the maximum element of 
~ ,  respectively. 

Theorem 2.1. X & Y is the greatest lower bound of X and Y 

Proof. 1. X & Y is a lower bound of both X and 

X k  X Yt- Y 
X &  Y t - X  X &  Y k  Y 
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Init ial  S e q u e n t s  

1. D1-D 

2. r ,  o1- A 

3. F1- T , E  

4. 11 -  

5. t-1 

Rules of Inference 

r1- A , D  D. H1- A 

F, I'I ~- A, A 
(Cut) 

F1- A , D  D. F1- A 
_ _  (~t left) - -  (~ right) 
D~.F1-A F~-A,D ~ 

A,B,  FF A 
(® left) 

A ® B ,  F1-A 

A , F F A  B.H~-A 

A~OB, F,I"II-- A , A  

F~-A ,A  II1-A,B 
(® right) 

r , l IV  A ,A ,A  @ B 

(P left) 
F t - A , A , B  

F b A , A P B  
('P right) 

A, FI-A 

A &  B, F1- A 
(& left) 

B, Ft- A 
(& left) 

A &  B, F1- A 

F1- A,A F1-A,B 
(k  right) 

F1- A , A &  B 

A, Ft- A B, Ft- A 

A O B ,  F1- A 
(0  left) 

r1- A, A 

F1-A. A O B  
(0 right) 

F I - A , B  

Ft'-A, A O B  
(0  right) 

B, F1- A Ill- A, A 

A--o B, F, II1- A ,A  
( -~ left) 

F F A  

!A, FI.- A 
- -  (! increase) 

!A,!A, FI- A 

!A, FI-. A 

A, F1- A , B  
( ~ right) 

FI- A , A  -o B 

(! decrease) 
A, FF A 

!A, FI- A 
- -  (! left) 

!F 1-?E, A 

!F~-?E,!A 
- -  (! right)  

FI-A 

I , F F A  
- -  (1 left) 

F F A  

FI- A, I 
(1 right) 

F1-A 

F1- A,?A 
- -  (? iacrease) 

F1- A.?A,?A 

r~- A,?A 
(? decrease) 

A.!F1-?E 

?A, !r F?E 
- -  (? left) 

r 1- A A Fitly], F 1- A 
(7 right) (V left) 

r~- A,?A VxF, r1- A 

r ~ a ,  ¢ {a /4  
(V right) 

F1- A,VxF 
a is not free in F and A 

F{alz}, r ~ 
(3 left) F~- A, F[tlz] 

3zF, F1- A 
a is not free in F and A F1- A , 3 x F  

Fig. 1. Sequent calculus of linear logic. 

(3 right) 
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2. When Z is a lower bound on both X and Y, X & Y is greater than Z: 

Z F X  Z F Y  
Z F - X & Y  

Similarly, the least upper bound of X and Y is given using G. Both 
operators & and G satisfy the commutative law and the associative law. 
Moreover, they satisfy the absorption law. Therefore ~ is a lattice. 

3. INDUCTION 

Induction is a process to induce the hypothesis that explains given 
examples. 

Definition 3.1. Induction. X ~ Y denotes that X semantically entails Y 
Let B represent the background theory, let E + (1 < i < n) and E f  (1 -<j  
-< m) represent the positive examples and the negative examples, respectively, 
and let them satisfy the following conditions: 

for alli, B ~ E i  + 

fora l l j ,  B ® E  7 ~= £ 

A formula H which satisfies the following conditions is called an inductive 
conclusion of B, E~- . . . . .  E +, and E~- . . . . .  Era: 

for alli, B ® H ~ E 3  

foral l j ,  B ® H ® E f  ~ ± 

Induction is a process to induce the inductive conclusion from the background 
theory and examples. 

From the symbol processing point of view, the binary relation ~ can 
be replaced with k. 

In this paper we consider especially induction for positive examples. 

4. ONE POSITIVE EXAMPLE 

One difficulty of induction in linear logic is that the first given positive 
example is not always the inductive conclusion. 

Theorem 4.1. Let E + be one positive example. H is an inductive conclu- 
sion o r E  + a n d B i f f H I - E  + F B  ±. 

Proof. B ® H k E + if H k E + P B ±. We have 
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B~-B 

E + F E + B, B ± F 

H ~- E + P B  l E + P B  ±, B ~ E + 

B , H ~  E + 

B ® H ~ - E  + 

H ~ - E  + P B  ± i f B ® H D - E  + . W e h a v e  

B f - B  

H } - H  ~ - B ± , B  

H ~ B ± , B ® H  B ® H ~ E  + 

H~- E + , B  i 

H ~- E + P B  ± 

The process to generate the formula E satisfying B ® H ~- E from B ® 
H is deduction. Therefore, induction is regarded as the inverse of  deduction. 

Defini t ion 4. t .  Inductive Operator -~. X ~ Y iff Y 1- X. 

Taking this relation as an operator, we can obtain the inductive conclu- 
sions of  the background theory B and positive example E ÷ by starting with 
E + P B ±. 

Theorem 4.2. The  relation ~ is transitive. 

P r o o f  Since I- is transitive, this is obvious. • 

For any formula A, A ~ 0 because of the initial sequent F, 0 t- A. 
Indeed 0 is a hypothesis for any positive example and background theory. 
However, this is meaningless. Another extreme is A --* A. Thus E + P B ± is 
a hypothesis for the positive example E ÷ and background theory B. Basically, 
we consider removing some redundancy in E ÷ P B ± by using operator --*. 

Knowledge such as X --o X does nothing. When one X is given, this 
knowledge yields only the same one. Since X --o X is equivalent to X P X ±, 
we get the following lemma. 

L e m m a  4.1. X P X + " ~  1. 

P r o o f  We have 

X k X  

~- X P X  l 

1 ~- X P X  ± 

Therefore, we can rewrite X t9 X ± as 1 using the operator ~ A more 
general form of the above rule is given as follows. 
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Theorem 4.3. (V @ X) P (W @ X -L) "---> V @ W. 

Proof We have 

XFX 

WF W F X, X i 

V F V  W F X , ( W ® X  ~-) 
II 

v, w k  ( v ®  x), ( w ® x  -~) 
v, w F (v ® x) P (w ® x-b 

v ®  w k  ( v G  x ) P ( W ®  X ±) 

Lemma 4. l is the special case of Theorem 4.3 where both V and W are 
equal to I. 

Some knowledge may be used many times in order to prove the positive 
example. The following three theorems deal with the logical operators which 
allow weakening and contraction. 

Theorem 4.4. 9.,4 "---> A. 

Proof We have 

Theorem 4.5. ?A "--> I .  

Proof We have 

A F A  

A F ? A  

_LF 

_LF?A 

Theorem 4.6. 9.,4 "---> 9./t P ?.,4. 

Proof We have 

m 
?A P ?A F ?A, ?A 

?A P ?A E ?A 

Theorem 4. 7. If A "---> A', then A @ X "----> A' Q X, A P X "--> A' P X, 
A ~)X"-'>A' ~ ) X , A  &X"-->A' &X,X--oA. . - ->X--oA' ,  !A"--> !A', and?A 
, ' ~ - . 9 , ? A  t " 

The following theorem allows us to apply the operator ~ to a part of 
a formula. 
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Proof. We have 

A'F-A XF-X A'F-A XF-X 

A ' , X F - A ® X  A ' P X F A ,  X 

A ' ® A F - A ® X  A ' P A F - A P X  

A ' F A  X F X  A ' F A  XF-X 

A ' F A G X  X } - A O X  A ' & X F A  A ' & X F X  

A ' @ X F - A  O X  A' &XF-A & X  

A' F-A X F X  A'F-A A' F-A 

X ,X- -oA 'F-A [A'F-A A'F-?A 

X--o A' }- X--o A !A ' F- !A ?A ' F ?A 

Example 4.1. Let D mean that you have just one dollar, and C mean 
that you have just one pack of cigarettes, and P mean that you have just one 
pack of fried potatoes; the background theory B is given as follows: 

B = !(D -o C) ® !(D --o p)  

This background theory means, "If you spend 1 dollar, you get one pack of 
cigarettes, and if you spend 1 dollar, you get one pack of fried potatoes, and 
this knowledge can be used as many times as required." As a positive example, 
"You have two packs of cigarettes and a pack of fried potatoes" is given. 
What kind of hypothesis can we get which explains the situation? We have 

E + = C ® C Q P  

The condition of hypothesis H is written as follows: 

B ® H I - E  ~ 

= HF E~PB ± 

= H F- (C Q C ® P) P(!(D -o C) ® !(D --o P))± 

= H 1- (C Q C ~) P) P ?(D @ C -L) P ?(D ® P£) 

Using the inductive operations introduced above, we can rewrite this formula 
as follows: 

(C ® C ® P) P?(D ® C ±) P?(D ® P±) 

(C ® C ® P) P?(D ® C ±) P?(D ® C -L) P?(D ® P±) 

----> (C ® C Q P) P (D ® C 1) P (D ® C ±) P (D ® P±) 

(D ® C ® P) P(D ® C ±) P(D ® P±) 

,--* (D ® D ® P) P (D ® P±) 

- - - > D ® D ® D  
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Thus, we get the hypothesis, "You have just 3 dollars." 
To take the predicate logic into account, the inductive operator with 

unification is introduced. As in the resolution principle, a formula X(t) and 
its complement X(x) ± are found with the substitution [t/x]. 

Theorem 4.8. The following holds: 

(~c(V • X)) P (W ~ X±[t/x]) ~ V[t/x] Q W 

Proof Some abbreviations are employed in following proof: 

X[t/x] k X[t/x] 
W ~- W ~- X[t/x], Xl[t/x] 

V[t/x] ~- V[t/x] W k X[t/x], (W ® X Z[t/x]) 
V[t/x], W k (V @ X)[t/x], (W Q X Z[t/x]) 
v[t/x], w k (V ® X)[t/x], (W ® X ±[t/x]) 
V[t/x], W k (3x(V ® X)), (W ® X±[t/X]) 

V[t/x] Q W k (3x(V Q X)) P (W Q X Z[t/x]) 

Example 4.2. There is a background theory, "A bird has wings, and this 
knowledge can be used as many times as required": 

B = !Vx(Bird(x) -o Haswings(x)) 

When a positive instance "Tweety has wings" is given, 

E + = Haswings (Tweety) 

we can rewrite the condition of the hypothesis as follows: 

B ® H F E  + 

= H~- E+PB ± 

= H k Haswings(Tweety)/9 (!Vx(Bird(x) -,, Haswings(x))) ± 

= H ~- Haswings(Tweety) P ?(Vx(Bird(x) ~ Haswings(x))) ± 

= H ~- Haswings(Tweety) P ?Rr(Bird(x) -o Haswings(x)) ± 

= H k Haswings(Tweety) ,o ?Rr(Bird(x) ® Haswings±(x)) 

We can use the inductive operation introduced above to unify this, with the 
substitution [Tweety/x]. Thus, we can rewrite this formula as follows. 

Haswings(Tweety) P ?(3x(Bird(x) ® Haswings±(x))) 

Haswings(Tweety) P (3x(Bird(x) ® HaswingsJ-(x))) 

Bird(Tweety) 

Thus, we get the hypothesis, "Tweety is a bird." 
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5. PLURAL POSITIVE EXAMPLES 

When plural positive examples are given, the hypothesis must explain 
all of them. The next theorem leads to a hypothesis which explains two 
positive examples at the same time. 

Theorem 5.1. When Hi is an inductive conclusion for positive example 
E~- and/-/2 is an inductive conclusion for positive example E~, HI & H2 is 
an inductive conclusion for both E~- and E~. 

Proof. HI & 112 is the greatest lower bound of HI and/-/2. The relation 
k- is transitive. Therefore obvious, l 

The hypothesis may be too complex for using the above theorem. A 
complicated hypothesis can be reduced by the following rule. 

Theorem 5.2. Let A denote a finite number of A's connected by ® or & 
We have A ~-> !A. 

Proof. A "--> !A: 

A k A  

!A k A 

(!A) ® A' ~ !A if A' "~ !A: 

!A k !A !A~-A' 

!A, !A k (!A) @ A' 
!A k ( ! A ) ® A '  

(!A) & A' "--* !A if A' ~ !A: 

!A k !A !A k A '  
!A k ( ! A ) & A '  

And !A ~ !A; thus Theorem 4.7 leads to A ~ !A. • 

For example, when E~- suggests D ® D and E~- suggests D ® D ® D, 
the inductive conclusion may be (D ® D) & (D ® D ® D) or simply !D. 

6. CONCLUSION AND FURTHER ISSUES 

We have presented a method for induction in linear logic. This method 
successfully deals with positive examples including predicate linear logic. 

The operation which removes redundancy of the form X --o X is similar 
to resolution. However, this operation is given as the inverse of deduction, 
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The inductive operation introducing ! is ambiguous. There are many 
choices of simplification using ! in general. This rule induces a numerical 
relation, such as, an even number of D's is represented by !(D ® D), one or 
more D's is represented by D ® !D, etc. 

The treatment of negative examples is another theme. In general, sym- 
bolic induction may be regarded as solving a simultaneous inequality on a 
set of formulas ~ using partial order. 

Unlike traditional logic, formulas of linear logic can represent quantity. 
Thus induction in linear logic can allow machine intelligence to find general 
knowledge expressed in terms of quantitative attributes. 
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